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This work is concerned with the parallel-flow shear dispersion of a solute which 
undergoes a second-order recombination reaction. The primary goal of the work is 
to provide background theory for the determination of the coefficient of diffusion of 
reactive-gas-phase species. Approximations are sought for large time and weak 
combination. At first, dispersion dominates recombination, and a modification of the 
Chatwin (1970) asymptotic expansion gives the concentration distribution as a 
regular perturbation expansion in E and t-f, where E is a dimensionless parameter 
characterizing recombination and t is dimensionless time. The regular expansion 
breaks down for dimensionless times t of O ( E - ~ )  when dispersion and recombination 
are of the same importance. At these times, the governing equation is nonlinear and 
this regime is analysed by a numerical method. Finally, a similarity solution is derived 
for the concentration of solute when s2t is large. Overall, the major effect of second- 
order recombination on dispersion is to flatten the peak of the dominant Gaussian 
concentration distribution. The speed of the centre of mass of the solute cloud is not 
affected a t  leading order by recombination. 

1. Introduction 
In a recent paper, Plumb, Ryan & Barton (1983) have accurately determined the 

coefficient of diffusion for a mixture of gases using Taylor’s (1953) shear-dispersion 
theory for solutes injected into flowing solvent. A knowledge of diffusion coefficients 
for gas species is required for a variety of technological processes; and the work of 
Plumb et al. and Barton (1984a) is adequate for the case when the gaseous solute 
is chemically inert, or if it undergoes a first-order chemical reaction either within the 
flow or at  the boundary. Other sorts of chemical reactions lead to hitherto unstudied 
complications of the dispersion process however. The present paper is concerned with 
just such a case encountered by Plumb & Ryan (private communication), specifically, 
when a gaseous solute undergoing shear dispersion also takes part in a second-order 
chemical reaction by recombining with itself. In  this case, the familiar advection- 
diffusion equation for the concentration of solute is modified to include a nonlinear 
recombination term, and the established literature gives no results for the properties 
of the concentration distribution. 

This paper is concerned with the shear dispersion in parallel flow of a solute which 
undergoes a weak recombination reaction. Mathematically, ‘weak ’ means that the 
dimensionless reaction rate E, defined in $2, is such that 0 < s 4 1. Five natural 
timescales may then be distinguished for dispersion from a S function or other 
reasonably localized source : 

(a)  t < 1? (b) t of 0(1),  (c) 1 4 t 4 E - ~ ,  (d) t of O(s-%), (e) 1 4  s2t, 
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where t denotes dimensionless time (see $2). In regimes (a), (b) and (c), recombination 
effects represent a regular perturbation to the basic dispersion process. Regime (a) 
is not investigated in this paper, but could be handled by suitable modification of 
one of the analytical short-time approximations such aa those of Chatwin (1977), 
Barton (1978) or Smith (1981b). Numerical procedures, such as those described by 
Barton & Stokes (1985), were developed for regime (b), but are not included in this 
paper. 

Regime ( c )  requires quite complicated mathematical manipulations which are 
presented in some detail in $3. The theory involves a regular perturbation in s of the 
Chatwin (1970) large-time approximation, and the results are useful provided 
(Af t )+  < c1 where M is a dimensionless constant. The key features of the solution are 
that recombination flattens the peak of the dominant (Gaussian) term of the 
concentration distribution, whilst not affecting at leading order the speed of the centre 
of mass of the solute cloud. All the constants involved in the theory for regime (c) 
could be determined, in principle, by matching onto the numerical results for 
regime (b) and by enforcing suitable behavious on the perturbation solution. 
Regime (c) is important practically, and successful fits of the theory to data 
gathered by Plumb k Ryan (private communication) have been made (Barton 
1984b). Unfortunately, Plumb & Ryan found it difficult to gather good experimental 
data when the process is dispersion-dominated with weak recombination; thus the 
data analysed in Barton (1984b) is not consistent enough to warrant open 
publication. 

Regime (d) is concerned with times such that (Af t ) :  is of O(s-') when the problem 
becomes inherently nonlinear and the regular perturbation expansion derived in $3 
breaks down. Standard singular-perturbation techniques were not able to analyse this 
regime, and it was therefore examined in $4 by applying a numerical method to the 
appropriately simplified form of the advection-diffusion-recombination equation 
( 2 . 1 ~ ) .  The theory derived in $3 provides initial conditions for the numerical work 
of $4. The results for regime (d) are again simple and show that the mean speed of 
the solute cloud is unaffected, whilst there is a continued flattening of the peak of 
the concentration distribution by recombination. Numerical results for the total 
amount of solute remaining are presented in this section. 

Finally, $5 is concerned with regime (e) in which s2t is large. A similarity solution 
is applicable for these times, and it is shown that the two key parameters in the 
similarity solution could be determined by matching onto the numerical solution 
derived in $4. The general properties of the similarity solution are investigated briefly, 
and the specific determination of the key parameters is attempted but found to 
involve prohibitive amounts of computer time. Regime (e) is not relevant to the 
laboratory experiments which motivated the present work. 

2. Mathematical preliminaries 

solution C(x, y, z, t ,  s, P) of the problem 
The object of the paper is to investigate the large4 and small-s behaviour of the 

-+Pu(y,z) - = -+-+- C-eC2 in a, ac ax [asp a2 ay2 a2 a22 a21 ac 
at 

( 2 . 1 ~ )  
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-+O fo rm,n=0 ,1 ,2  ,.... Cfinite, xn- 
acm I a x 4  

(2.ld) 

These equations describe the behaviour of a cloud of soluble material undergoing a 
second-order recombination reaction whilst being dispersed in the parallel flow 
(u(y, z ) ,  0,O) through the cross-sectional region 51 with boundary aQ. The problem 
has been written in dimensionless variables, and dimensional constants and variables 
(denoted by asterisks) may be recovered using the definitions 

a*2t t* = - u* = u*u, 
K* ’ 

Q*C &* c* =--- 
a*3 I SZ I ’ 

(2.2b) 

(2.2c) 

where K* is the diffusion coefficient for the solute and solvent, U* is the mean value 
of u* over Q*, a* is typical cross-sectional length, Q* is the initial amount of solute, 
and ID I is the dimensionless cross-sectional area of the flow. The solute undergoes 
Fickian diffusion with dimensionless diffusive flux given by - VC and P = U*a*/K* 
is the PQclet number of the flow. The inclusion of the factor 1521 in the non- 
dimensionalization of C* conveniently ensures that jjj CdV = I Q 1 initially, and the 
variable u has unit cross-sectional mean, 

. c c  
- 1  u = - JJ u(y,z)dydz = 1. 

I Q I  n 
The term --EO on the right-hand side of ( 2 . 1 ~ )  represents the effect of solute 

recombining with itself through a second-order reaction. It should be remarked that, 
if e = 0, a great deal is known about the asymptotic large-time properties of the 
solution of problem (2.1): in particular, Taylor (1953), Aris (1956), Gill & Sankara- 
subramanian (1970), Chatwin (1970) and Smith (1981 a) have presented successful 
asymptotic theories based on different approaches. Asymptotic theories also exist for 
reactive contaminant dispersion. For example, De Gance & Johns (1978a, b), Smith 
(1983) and Barton (1984~)  examine the case when the no-diffusive-flux boundary 
condition (2.1 b) is replaced by the following one describing (possibly catalysed) 
boundary reactions, 

fi-VC = -gC at aQ. 
First-order reactions in the bulk of the flow are also known not to present 
mathematical difficulties (Barton 1984~) .  In  contrast, very little is known about the 
effect of second-order reactions on contaminants undergoing shear dispersion. 

It was pointed out in the introduction that problem (2.1) requires different methods 
of solution for each of five timescales. The first two regimes are not investigated in 
this paper; rather we commence with a motivation for regime (c) - the large-time, 
weak-recombination limit described by 1 < (Mt$ < 6-l. This regime is defined by the 
requirement that the recombination effects represent a regular perturbation to the 
simple large-time approximation due to Chatwin (1970). Chatwin’s direct expansion 
employs the coordinates 

y =  y, 2 = 2, T = (&$, 
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where y and M are constants whose values are fixed by the theory and it is known 
that, for passive contaminants, the leading solution at large time is 

C=al , ,T1exp{-~X2}.  (2-4) 

If the recombination is weak, that is 0 < E -4 1, the term (2.4) will provide a forcing 
term for a perturbation calculation. An estimate of this perturbation suggests that 
it is necessary and consistent to look for a solution in the form 

C = C o ( X ,  Y, 2, T) + EC,(X,  Y, 2, T) + s2C2(X, Y, 2, T) + .. . , (2.5) 

where each C, can be expressed as a power series in 1/T as follows: 

1 1 1 
c o ( X ,  Y,Z,T) = ~ c ~ , 1 ( X ~  Y,z)+nCo,2(X, y , z ) + ~ C o , , ( X ,  Y,z)+..-, ( 2 . 6 ~ )  

(2 .6~)  

(Note that the Pkclet-number dependence of all coefficient functions is no longer 
mentioned explicitly.) A regular perturbation calculation is used in the next section 
to determine the coefficient functions C,,,,. It is clear that the expansions (2.6) 
become singular for times T of O(l /a) ,  and this regime is considered in $4. 

1 
c2(X,  Y,Z,T) = Tc2,-1(X, Y,z)+C2,0(X, Y,z)+?;C2,,(X, Y , z ) + - . . .  

3. Regular perturbation calculation for (Mt)! 4 c1 
This section contains the most difficult mathematics of the paper : the analysis for 

regime (c). We begin by establishing equations for the coefficients C,,,, , mentioned 
in the perturbation approximations (2.6u, b, c). Chatwin's (1970) results for the 
coefficients Co,n are then summarized, and this is followed by a calculation of 
the important term C1,, which represents the leading effect a t  large time of the 
recombination reaction. Readers who wish to skip some of the analysis are advised 
that (3.8) and (3.9) contain the main results of the section, and, indeed, of the paper. 

In terms of the coordinates X, Y, 2, T defined by (2.3), the basic problem ( 2 . 1 ~ )  
becomes 

M a c  u-y x ac I a w  
- - + [ ~ - $ l ~ = ~ a x 2  2T aT - + A C - e P  inSZ, ( 3 . 1 ~ )  

where AC is given by 

This problem ( 3 . 1 ~ )  is to be solved under the boundary conditions 

(3.1 b )  

If the expansions (2.5) and (2.6) are substituted into equation (3.lu), the following 
hierarchy of problems are to be solved under the boundary condition (3.1 b). 
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O(so) terms 

0(soT-'): ACo, = 0, (3.2a) 

& (3.2b) O ( h T 2 ) :  ACO,, = (u-y) ax ) 

+ X  aco*n-2+ ( n - 2 )  Co, n-2} ( n  2 3) .  ( 3 . 2 ~ )  ax 

( 3 . 3 ~ )  

& (3.3b) ax ) 

O(sT-'): AC,, = (u-7) 

( 3 . 4 ~ )  

(3.4b) 

n 
+ ( n - 2 ) ~ ~ , ~ - , ) + 2  q-1 z c ~ , ~ c ~ , ~ - ~  ( n >  1).  (3.4c) 

It is possible to solve (3 .2))  (3.3) and (3.4) sequentially to determine the coefficient 
functions Cm, n.  For the purposes of the present work, the analysis is taken far enough 
to determine the leading correction forced by the recombination reaction, and to 
ensure that the expansion procedure is consistent. 

In  fact, the problems (3.2a-c) for the O(s0) terms have been completely studied by 
Chatwin (1970) who showed that the coefficient functions Co, 1, Co, end Co, are (with 
slight changes of notation) 

c o ,  1 = a1,o $1 HO(X) exp { -fm 
Co, 2 = [ ( a 2 , o  $1-%,0 $2) Hi(X) + a2.191 Hs(X)I exP {-fx2>, 
'0.3 = [(a3,0 $1-a2,0 $ 2 + a l ,  0 $3) H 2 ( x )  + (a3, 1 $1-a2, 1$2) H4(x) 

+ a3,2f14(X)I exp -fX">. 

Here, the Hn(X) are Hermite polynomials defined by 

Hn(X) exp { -+P} = 
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and the functions $,(Y,  z )  are the finite solutions of the equations 

A$l = 0, 7: = 1, ( 3 . 5 4  

4 3  = (u-Y)$2-(%-Y)$2A$19 7 3  = 0, (3.5c) 

A92 = @-Y)$1, 7 2  = 0, (3.5b) 

subject to the boundary conditions (3.1 b). Each of these problems possess a unique 
solution and the function dl is, in fact, identically unity. The constant y is found by 
a solvability requirement (see below) to be 

y = u, ( 3 . 6 ~ )  

and the solution has the stated concise form provided that the constant M is 

M =  2 (b - - (u-y)C,) .  (3.6b) 

Also the constants up,  (p = 1 , 2 , 3 )  are to be determined by matching onto regime ( b ) ,  
and the remaining constants a2,1, 0 1 ~ , ~ ,  depend on the up,o .  Chatwin (1970) 
gives expressions for all of these constants. 

The foregoing provides a direct three-term approximation for the case when e = 0. 
The results depend crucially on the solvability requirement that the equation A$ = R 
under boundary conditions (3.1 b) possess a solution provided only that 
B = R$l = $1 A$- $ 

It is now possible to calculate the O(e)  terms, the first of which gives the dominant 
correction forced by the recombination reaction. The solutions of (3 .3~2,  b )  are 

--- 
= 0 (by integration by parts and boundary conditions). 

with d2 determined by (3 .5b)  and fo(X),fl(X) as yet arbitrary. Equation ( 3 . 3 ~ )  with 
n = 2 yields 

and, since the property y = ii has been established, the solvability requirement 
provides the ordinary differential equation (ODE) 

for fo(X) upon using the definition (3 .6b )  for M. 

reaction and it has the general solution 
Equation (3.7) describes the leading effect of the second-order recombination 

X X 
f o ( X )  = A s e-tt' J: ed8' ds dt + c1 so e-?lt' dt + c2 

0 
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with A = 2a: , , /M. The constants c1 and c2 are determined by ensuring that f o ( X )  
decays to zero for I XI large; this gives 

c1 = 0, 

c2 = - A Jow e+t' s," e t8 '  ds dt = -+An, 

whence f o ( X )  can be more conveniently expressed as 

or f o ( X )  = +An {erf (X/d) - I}, 

under the usual definition of the error function, 

2 z  
erfz = a 1', e-t'dt. 

The principal goal of the present work has thus been achieved. That is, the injected 
cloud of solute takes the approximate form 

for T large and E small where, formally, the terms designated 0(F2,  eT-l, e2T) in the 
approximation (3.8) are small compared with the displayed terms provided that 
s-i g T 4 1/e. In the expression (3 .Q the constant al , ,  is known to be 1/P(2n)t  since 
the initial dimensionless amount of solute is 151 I .  Moreover, if the definitions (2.3) 
are recalled and if a P M  is defined to be D (the dimensionless shear dispersion 
coefficient), approximation (3.8) can be re-written 

One- and two-term plots of the approximation (3.9) are given in figure 1 for 
representative values of ( t ,  B ,  P) when the basic flow is Poiseuille flow in a tube. In  
this case, the constant M is known to be M = 2 ( P 2 + & ) ,  and the values of ( t ,  6, P) 
are chosen so that the second term in (3.9) is small compared with the first. The plots 
are simple in form: the major effect of the weak recombination is to flatten the peak 
of the dominant Gaussian distribution. 

A partial justification of the representations (2.5) and (2 .6)  was made by examining 
some of the neglected terms in the result (3.8). Of these, the 0(T2) term has already 
been described, and the O(sT-') and O(e2T) terms were found to involve the solutions 
of second-order inhomogeneous ODEs. These ODEs satisfied certain (secondary) 
solvability conditions and there was no reason to suspect that their solutions could 
not be found; that is, there was no indication that log, T terms were required in the 
representations (2.5) and (2 .6) .  The cumbersome details of the consistency checks are 
omitted. 
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x - t  

FIGURE 1. One- and two-term plots of approximation (3.9) for Poiseuille flow at dimensionless times 
t = 1,2 as a function of dimensionless distance z : - - - - , one-term approximation; -, two;term 
approximation. The parameters P and E are P = 100, E = 5. 

4. The numerical solution for t of O ( S - ~ )  
The regular perturbation expansion (3.8) is not applicable to regime (d), in which 

T is of O(s-') or, equivalently, t is of O ( S - ~ ) .  A number of attempts were made using 
singular perturbation techniques (such as the method of multiple scales and the 
method of strained coordinates, Nayfeh 1973), to derive approximations for 
the concentration in this regime. All the attempts led to failure, however, and the 
complicated details are again suppressed. At these times, it appears that the effects 
of shear dispersion and of recombination are of comparable importance in (2.1 a) ,  and 
the problem becomes inherently nonlinear. 

Accordingly, a numerical solution has to be found for ( 2 . 1 ~ )  for time t of order 
O ( E - ~ ) .  At these large times, the solute is fully mixed over the cross-section of the 
parallel flow and, in dimensionless coordinates (2, t )  moving at  the discharge speed 
of the flow, the dominant equation reduces to 

where D is the appropriate dimensionless shear dispersion coefficient (for example, 
D = 1 + (AP) for solute dispersion in Poiseuille flow). Equation (4.1) can be reduced 
to the simple form 

by introducing the natural scales 
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whilst an initial condition on (4.2) can be obtained by re-writing (3.9) using (4.3). The 
resultant equation is 

$(&T)  - (4~7)-fe-~'~'-Q[l-erf~[/(4~)f]  as T + O ,  (4.4) 

and this represents the matching condition between regimes (c) and (d). 

one-term approximate expression 
For the computational purposes of the present section, (4.4) is replaced by the 

( 4 . 5 ~ )  

and the auxiliary condition $ + O  as 1 [ I -+ a (4.5b) 

is applied so as to obtain a well-posed problem for $([, 7 ) .  To introduce the numerical 
technique, it is observed that, for a fixed /3 and in the absence of recombination, (4.3) 
and (4.5) would have the solution 

This suggests that it would be advantageous to look for a solution in terms of the 

If $(& 7 )  is identified as +([, r ] ) ,  the full problem for + is found to be 

( 4 . 8 ~ )  

(4.8b) 

+ + O  asI[l+a. ( 4 . 8 ~ )  

The particular utility of the variables ( 5 , ~ )  lies in the fact that the solution + does 
not spread with [ as r] is increased. In fact, for the computations, condition ( 4 . 8 ~ )  
was replaced by 

and it was expected that + was less than ( p / ~ ) f  exp ( -  16) for [ outside this range. 
Equations (4.8a, b) and (4.9) pose a parabolic problem for +([, 7) and the method 

of lines is ideally suited for its solution. Thus the software interface PDEONE 
(Sincovec & Madsen 1975) was used to convert equation ( 4 . 8 ~ )  to a set of ODES in 
r] which were solved using the package GEARB (Hindmarsh 1975). For most of the 
computations described subsequently, the parameter NPTS in PDEONE was set to 
be 201. This means that central-difference expressions on a uniformly spaced mesh 
of 201 [ values in -8 < [ < 8 were used to replace the 

To present some numerical results, we revert to the variables ( 5 , ~ )  and fix the value 
of /3 in the initial condition ( 4 . 5 ~ )  to /3 = 2. (This value of /3 is too small for the initial 
condition ( 4 . 5 ~ )  to be a good approximation to the matching condition (4.4); 
however, the form of the results for large 7 is insensitive to the value of 8, whilst 
numerical calculations are quicker for /3 of O( l).) Figure 2 shows the concentration 
$([,T) as a function of E at T = 1 and 7 = 10; dashed lines in this figure show 

+ = O  atI[I=8, (4-9) 

derivatives in ( 4 . 8 ~ ) .  



298 

0.3 - 

4 

0.2 I 

0.1 - 

-12 -8  -4  0 4 8 12 
5 

FIQIJRE 2. Numerical solutions of (4.3) at T = 1 and T = 10; dashed lines show equivalent 
results when the recombination term in (4.3) is omitted. 

equivalent results when the recombination term in (4.3) isneglected. The concentration 
plots are again simple in form, and it is clear that the effect of the recombination 
is to flatten the peaks of the distribution without affecting the speed of the solute 
cloud. Figure 3 shows the total quantity of solute, 

m(7) = s_, Cdx= s_, $d[, 

as a function of T ,  and includes short- and large-7 approximations which may be 
derived independently. The large-7 approximation is given by (5.4) in the next section 
and the sh0rt-T approximation was obtained as follows. 

The expression (3.9) applies when a delta function of unit strength is injected at 
t = 0 and it may be integrated to give the total mass of solute: 

00 cc 

a, 

Cdx= 1 - 4 s  [1-erf2(s)](4D)t)tds+ ..., 
8 0  -a, 

or m(s, t)  = 1 - 0.398 9474 + . . . , (4.10) 

on identifying &/D as 7 and evaluating the definite integral. In contrast, the 
numerical work of this section has used the initial condition ( 4 . 5 ~ )  with b = 2. This 
initial condition is approximately equivalent to a delta function of strength q (say) 
injected at 7 = -:/?, since the dispersion process is dominant at  small times and it 
takes a time $b for an initial delta function to diffuse to the form ( 4 . 5 ~ ) .  If the delta 
function injected a t  -$a had strength q, the mass of solute would be given by the 
following modified form of (4.10), 
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0 
-2 - 1  0 1 2 3 

log,, (7) 

FIGURE 3. Numerical results for the total amount of solute m(7) = j: $ d t  when the initial 
condition is given by ( 4 . 6 ~ ~ )  with B = 2. Daahed lines show the small- and Grge-7 approximations, 
equations (4.11) and (5.4). 

Hence, if the total mass of solute is to be unity at r = 0 with B = 2, q will be 
approximately given by the quadratic equation 

1 = q[l-0.39894q(Q)i]. 

This has the applicable root q = 1.2047, so the appropriate short-time expression for 
the mass is 

m(s, t )  = 1.2047( 1 - 0.48060 [r +Q]4 + . . .) (4.11) 

and this expression is plotted in figure 3. 

5. A similarity solution for s2t large 
This section contains an investigation of regime ( e )  in which 7 = s2t is large and 

there is still an inherent balance between shear dispersion and recombination terms 
in (2.1a). In  this regime, (2.la), or its appropriately simplified form (4.1), possesses 
a similarity solution 

(5.1a7 b )  

( 5 . 2 ~ )  

1 
7+T0 

4(E77) = -f(~), T = @(7+70)1-+, 

where f(7) satisfies the ODE 

and is subject to the conditions 

f" + rl f l+ 2f = 2f2, 

f(0) = 0, f(r)+O as q + O .  (5.2 b ,  c )  

(A physical constraint which must also be satisfied is that f(r) is always positive.) 
The key parameters which muat be specified independently are ro andf(O), and these 
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Central T 

of data 

3000 
5000 
7000 
9000 

11000 
13000 
15000 
17000 
19000 

B = 0.5 

a1 

64.5 f 1.6 
86.9f 1.4 
l l l f 2  
126 f 3 
149f4 
163f7 
170f 14 
200f13 
208 23 

a2 

0.6697 +0.0004 
0.6735f0.0002 
0.6761 f0.0002 
0.6774 f0.0002 
0.6789 f 0.0002 
0.6797 f O.OOO4 
0.6799 f 0.0006 
0.6812f0.0006 
0.6815f0.0008 

a1 

73.0 f 1.8 
102f2 
126f2 
139f8 
172 f 14 
197 f 18 
224 f 55 
237 f 45 
241 f 75 

/? = 2.0 

a2 

0.6671 f0.0004 
0.6719 k0.0002 
0.6748 f0.0002 
0.6758 kO.oOO6 
0.6780 f O.OOO8 
0.679 f 0.0001 
0.681 f0.002 
0.681 f0.002 
0.681 f0.002 

TABLE 1. The coefficients a, and a2 in the representation of l /$(O,  T )  by (~+a,) /a ,  for = 0.5 and 
B = 2. The key parameters 70 andf(0) are equivalent to a, and at. The coefficients were determined 
by a leaat-squares fit to l /$(O,  T )  at 21 evenly spaced values in the interval [T- 1O00, T +  10001. 
Approximate 95 yo confidence limits are also shown. 

could be found, in principle, by using the numerical procedures of the previous section 
to compute $ ( [ , T )  for large values of r and then matching with ( 5 . 1 ~ ) .  

Suppose that a value of /3 has been fixed in the initial condition ( 4 . 5 ~ ) .  Then the 
similarity solution (5.1) is applicable when a plot of l / $ ( O ,  T )  against T has the straight- 
line asymptote (T + ~ ~ ) / f ( 0 ) .  Unfortunately, however, it  is necessary to compute $(O,  T )  

for very large values of T before this procedure is possible. This point is illustrated 
in table 1,  which describes the result of a least-squares fit of the form ( T + U ~ ) / U ~  to 
l / $ ( O ,  T )  where the data consist of 21 evenly spaced points in the interval [T- 1O00, 
T +  10001. It is clear from this table that, even for modest values of /3, it is impossible 
to determine the parameters T~ and f(0) unless the time integration is pursued quite 
a lot further than T =  20000. Bearing in mind that T =  eat, this amounts to 
computations a t  unrealistically large values of the dimensionless time t .  Another point 
is the computing time involved: the numerical method introduced in the previous 
section is particularly convenient for computations at large values of T ,  yet it still 
took about 1 hour’s C.P.U. time on a VAX 11/750 to compute out to 7 = 20000 with 
a mesh of 201 evenly spaced f[ points. For the purposes of this paper, an accurate 
determination of T~ and f(0) is not worth the expense it would entail. (In passing, 
it is noted that another numerical algorithm based on a spectral method was also 
used to solve (4.3). The algorithm would have taken much longer to produce the 
results in table 1,  and it was regarded as inferior to the algorithm described in $4.) 

It is of interest to examine the properties off(7) as a function off(0). Problem (5.2) 
was written in the form 

“[f] d7 g = [ -7g-2f ( l - f )  g l  ’ 
(5.3u) 

and this was integrated numerically from the initial condition 

f(0) = A ,  g(0) = 0, (5.3b) 

to give results for various values of A as shown in figures 4 and 5.  The phase plane 
plot in figure 4 shows that f(7) becomes negative for large values of f[ if A lies in the 
range 0 < A < 0.6899, and these values of A therefore lead to physically unrealistic 
solutions. Values of A in the range 0.6899 < A < 1 all lead to positive solutions which 
decay as 7 + 00, whilst values of A greater than 1 lead to physically unrealistic 
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FIQURE 4. Phase plane plots of g =f against f for various values of A in the initial condition 
(5.3b). The dashed line shows the solution trajectory for A = 0.6899. 
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FIQURE 5.  Plots of f(7) against 7 for various values of A in the initial condition (5.3b). The 
dashed line shows the solution for A = 0.6899. 
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growing solutions as r ]  is increased. These points are borne out by the plots of f(r]) 
against r ]  in figure 5. 

It may be seen that the values off(0) = a2 described in table 1 are all just below 
the critical value 0.6899. Presumably, the main cause of this physically unreasonable 
result is truncation error in the central-difference expressions for the t; derivatives 
in (4 .8~) .  It is speculated that high-accuracy computations would give the critical 
value 0.6899 forf(0) = u2 independent of the value of /3 chosen in ( 4 . 5 ~ ) .  The value 
of 7o = a, should be dependent on /3 however. It is reasonable to assume that T~ should 
tend to a limiting value as /3 is taken very large and ( 4 . 5 ~ )  becomes a good 
representation of a 6 function. On the other hand, for /3 of O ( l ) ,  there is quite a 
mismatch between the initial condition ( 4 . 5 ~ )  and the requirements (of balance 
between diffusion and recombination) for the similarity solution. Hence it takes some 
time for the solute distribution to reach the similarity form, and this is reflected in 
a smaller positive value for 70 = a,. (That is, the virtual origin of the similarity 
solution is still negative, but becomes less negative as /3 is decreased.) 

Finally, the amount of solute remaining at  very large values of the time is 
considered. By (5 . la ,b) ,  this is given by 

00 

m(7) = I_, 5% 7 )  dE 

co 
= 2:(7+~,)-4J-~f(r])dr]. 

The integral in this expression is found to be 2.0532 iff(0) is set to the critical value 
0.6899. Further, an examination of table 1 shows that a reasonable value for T~ is 
T~ = 260 when /3 = 2. Thus, the large-time expression for the mass (for /3 = 2) is 

(5.4) m(7) = 2.904(7 + 260)-: 

and this expression is plotted in figure 3. 

I would like to acknowledge the contribution of Dr P. J. Blennerhassett (University 
of New South Wales) to an earlier version of this paper, and I am grateful to Dr 
R. Smith (University of Cambridge) for suggesting the similarity solution discussed 
in $5. 
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